File Name: business research methods and statistics .zip

Size: 2308Kb

Published: 28.11.2020

- Methods of sampling from a population
- Four basic research methods for business start-ups
- Data Module #1: What is Research Data?

B one form of a test and another form of that test. A paradigm that emphasizes the existence of a perfectly knowable reality is: Positivism Postpositivism Critical theory Constructivism 4. C Will the study lead to the development of other investigations? An investigator wishes to determine how much coverage current high school history texts give to the contributions of African Americans to our history.

It would normally be impractical to study a whole population, for example when doing a questionnaire survey. Sampling is a method that allows researchers to infer information about a population based on results from a subset of the population, without having to investigate every individual. Reducing the number of individuals in a study reduces the cost and workload, and may make it easier to obtain high quality information, but this has to be balanced against having a large enough sample size with enough power to detect a true association.

Calculation of sample size is addressed in section 1B statistics of the Part A syllabus. If a sample is to be used, by whatever method it is chosen, it is important that the individuals selected are representative of the whole population. This may involve specifically targeting hard to reach groups. For example, if the electoral roll for a town was used to identify participants, some people, such as the homeless, would not be registered and therefore excluded from the study by default.

There are several different sampling techniques available, and they can be subdivided into two groups: probability sampling and non-probability sampling.

In probability random sampling, you start with a complete sampling frame of all eligible individuals from which you select your sample. In this way, all eligible individuals have a chance of being chosen for the sample, and you will be more able to generalise the results from your study. Probability sampling methods tend to be more time-consuming and expensive than non-probability sampling. In non-probability non-random sampling, you do not start with a complete sampling frame, so some individuals have no chance of being selected.

Consequently, you cannot estimate the effect of sampling error and there is a significant risk of ending up with a non-representative sample which produces non-generalisable results.

However, non-probability sampling methods tend to be cheaper and more convenient, and they are useful for exploratory research and hypothesis generation. In this case each individual is chosen entirely by chance and each member of the population has an equal chance, or probability, of being selected.

One way of obtaining a random sample is to give each individual in a population a number, and then use a table of random numbers to decide which individuals to include. As with all probability sampling methods, simple random sampling allows the sampling error to be calculated and reduces selection bias.

A specific advantage is that it is the most straightforward method of probability sampling. A disadvantage of simple random sampling is that you may not select enough individuals with your characteristic of interest, especially if that characteristic is uncommon.

It may also be difficult to define a complete sampling frame and inconvenient to contact them, especially if different forms of contact are required email, phone, post and your sample units are scattered over a wide geographical area. Individuals are selected at regular intervals from the sampling frame. The intervals are chosen to ensure an adequate sample size.

Systematic sampling is often more convenient than simple random sampling, and it is easy to administer. However, it may also lead to bias, for example if there are underlying patterns in the order of the individuals in the sampling frame, such that the sampling technique coincides with the periodicity of the underlying pattern.

Whilst in this example the bias is obvious and should be easily corrected, this may not always be the case. In this method, the population is first divided into subgroups or strata who all share a similar characteristic. It is used when we might reasonably expect the measurement of interest to vary between the different subgroups, and we want to ensure representation from all the subgroups. For example, in a study of stroke outcomes, we may stratify the population by sex, to ensure equal representation of men and women.

The study sample is then obtained by taking equal sample sizes from each stratum. In stratified sampling, it may also be appropriate to choose non-equal sample sizes from each stratum. For example, in a study of the health outcomes of nursing staff in a county, if there are three hospitals each with different numbers of nursing staff hospital A has nurses, hospital B has and hospital C has , then it would be appropriate to choose the sample numbers from each hospital proportionally e.

This ensures a more realistic and accurate estimation of the health outcomes of nurses across the county, whereas simple random sampling would over-represent nurses from hospitals A and B. The fact that the sample was stratified should be taken into account at the analysis stage. Stratified sampling improves the accuracy and representativeness of the results by reducing sampling bias.

However, it requires knowledge of the appropriate characteristics of the sampling frame the details of which are not always available , and it can be difficult to decide which characteristic s to stratify by.

In a clustered sample, subgroups of the population are used as the sampling unit, rather than individuals. The population is divided into subgroups, known as clusters, which are randomly selected to be included in the study. Clusters are usually already defined, for example individual GP practices or towns could be identified as clusters.

In single-stage cluster sampling, all members of the chosen clusters are then included in the study. In two-stage cluster sampling, a selection of individuals from each cluster is then randomly selected for inclusion. Clustering should be taken into account in the analysis.

The General Household survey, which is undertaken annually in England, is a good example of a one-stage cluster sample. All members of the selected households clusters are included in the survey. Cluster sampling can be more efficient that simple random sampling, especially where a study takes place over a wide geographical region.

For instance, it is easier to contact lots of individuals in a few GP practices than a few individuals in many different GP practices. Disadvantages include an increased risk of bias, if the chosen clusters are not representative of the population, resulting in an increased sampling error. Convenience sampling is perhaps the easiest method of sampling, because participants are selected based on availability and willingness to take part.

Useful results can be obtained, but the results are prone to significant bias, because those who volunteer to take part may be different from those who choose not to volunteer bias , and the sample may not be representative of other characteristics, such as age or sex. Note: volunteer bias is a risk of all non-probability sampling methods. This method of sampling is often used by market researchers. Interviewers are given a quota of subjects of a specified type to attempt to recruit.

For example, an interviewer might be told to go out and select 20 adult men, 20 adult women, 10 teenage girls and 10 teenage boys so that they could interview them about their television viewing. Ideally the quotas chosen would proportionally represent the characteristics of the underlying population.

Also known as selective, or subjective, sampling, this technique relies on the judgement of the researcher when choosing who to ask to participate. This approach is often used by the media when canvassing the public for opinions and in qualitative research.

Judgement sampling has the advantage of being time-and cost-effective to perform whilst resulting in a range of responses particularly useful in qualitative research. However, in addition to volunteer bias, it is also prone to errors of judgement by the researcher and the findings, whilst being potentially broad, will not necessarily be representative. This method is commonly used in social sciences when investigating hard-to-reach groups.

Existing subjects are asked to nominate further subjects known to them, so the sample increases in size like a rolling snowball. For example, when carrying out a survey of risk behaviours amongst intravenous drug users, participants may be asked to nominate other users to be interviewed. Snowball sampling can be effective when a sampling frame is difficult to identify.

However, by selecting friends and acquaintances of subjects already investigated, there is a significant risk of selection bias choosing a large number of people with similar characteristics or views to the initial individual identified.

There are five important potential sources of bias that should be considered when selecting a sample, irrespective of the method used. Sampling bias may be introduced when: 1. Skip to main content.

Create new account Request new password. You are here 1a - Epidemiology. Probability Sampling Methods 1. Simple random sampling In this case each individual is chosen entirely by chance and each member of the population has an equal chance, or probability, of being selected. Systematic sampling Individuals are selected at regular intervals from the sampling frame.

Stratified sampling In this method, the population is first divided into subgroups or strata who all share a similar characteristic. Clustered sampling In a clustered sample, subgroups of the population are used as the sampling unit, rather than individuals. Non-Probability Sampling Methods 1. Convenience sampling Convenience sampling is perhaps the easiest method of sampling, because participants are selected based on availability and willingness to take part.

Quota sampling This method of sampling is often used by market researchers. Judgement or Purposive Sampling Also known as selective, or subjective, sampling, this technique relies on the judgement of the researcher when choosing who to ask to participate.

Snowball sampling This method is commonly used in social sciences when investigating hard-to-reach groups. Bias in sampling There are five important potential sources of bias that should be considered when selecting a sample, irrespective of the method used.

Our most popular content Public Health Textbook. Identifying and managing internal and external stakeholder interests. Management models and theories associated with motivation, leadership and change management, and their application to practical situations and problems. Dietary Reference Values DRVs , current dietary goals, recommendations, guidelines and the evidence for them. Section 1: The theoretical perspectives and methods of enquiry of the sciences concerned with human behaviour.

Inequalities in health e. The impact of political, economic, socio-cultural, environmental and other external influences. Introduction to study designs - intervention studies and randomised controlled trials. Parametric and Non-parametric tests for comparing two or more groups. Recently updated content 3c - Applications.

See our resources page for information, support and best practices. Due to the current restrictions in place, our inspection copy policy has changed. Ideal for those with a minimum of mathematical and statistical knowledge, Business Research Methods and Statistics Using SPSS provides an easy to follow approach to understanding and using quantitative methods and statistics. It is solidly grounded in the context of business and management research, enabling students to appreciate the practical applications of the techniques and procedures explained. The book is comprehensive in its coverage, including discussion of the business context, statistical analysis of data, survey methods, and reporting and presenting research.

To browse Academia. Skip to main content. By using our site, you agree to our collection of information through the use of cookies. To learn more, view our Privacy Policy. Log In Sign Up.

Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques. Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon. Babbie, Earl R. The Practice of Social Research. Your goal in conducting quantitative research study is to determine the relationship between one thing [an independent variable] and another [a dependent or outcome variable] within a population. Quantitative research designs are either descriptive [subjects usually measured once] or experimental [subjects measured before and after a treatment].

*Market research is a fundamental aspect of ensuring any new business start-up hits the ground running; connecting with its target market and providing a worthwhile alternative to competitors or even filling a much-needed gap in the market.*

Его пальцы набирали слова медленно, но решительно. Дорогие друзья, сегодня я ухожу из жизни… При таком исходе никто ничему не удивится. Никто не задаст вопросов. Никто ни в чем его не обвинит. Он сам расскажет о том, что случилось. Все люди умирают… что значит еще одна смерть.

Беккера очень удивило, что это кольцо с какой-то невразумительной надписью представляет собой такую важность. Однако Стратмор ничего не объяснил, а Беккер не решился спросить. АНБ, - подумал. - НБ - это, конечно, не болтай. Вот такое агентство.

Your email address will not be published. Required fields are marked *

## 5 Comments

## Tidumede

Free service manual kurzweil mark 10 service manual pdf free download 2012 jeep wrangler repair manual pdf

## Michael F.

It would normally be impractical to study a whole population, for example when doing a questionnaire survey.

## Elvis C.

for those studying statistics and research methods on business courses at book, and even books themselves can be downloaded as imstea.org imstea.org document.

## Sharon A.

The death of money jim rickards pdf the death of money jim rickards pdf

## Agate G.

Data may be grouped into four main types based on methods for collection: observational, experimental, simulation, and derived.